Picture

Northwestern Medicine
​Breakthroughs for Physicians

​​
  • Home
  • Specialties
    • Cardiovascular >
      • Research
      • Clinical Breakthroughs
      • News
    • Endocrinology >
      • Clinical Breakthroughs In Endocrinology
      • Research In Endocrinology
      • News
    • ENT (Otolaryngology) >
      • Clinical Breakthroughs
      • Research
      • News
    • Gastroenterology >
      • Clinical Breakthroughs
      • Research
      • News
    • Geriatrics >
      • Clinical Breakthroughs >
        • Managing Osteoporosis in Older Adults
      • Research
      • News
    • Neurosciences >
      • Rare and Complex Brain Tumors
      • Research
      • COVID-19 and Neurosciences
      • News
      • Clinical Breakthroughs
    • OB-GYN >
      • Clinical Breakthroughs
      • Research
      • News
    • Oncology >
      • Clinical Breakthroughs
      • Research
      • News
    • Ophthalmology >
      • Clinical Breakthroughs
      • Research
      • News
    • Organ Transplant >
      • Clinical Breakthroughs
      • Research
      • News
    • Orthopaedics >
      • Clinical Breakthroughs
      • Research
      • News
    • Psychiatry >
      • Clinical Breakthroughs
      • Research
      • News
    • Pulmonary >
      • Clinical Breakthroughs
      • Research
      • News
    • Rehabilitation >
      • Clinical Breakthroughs
      • News
    • Rheumatology >
      • Clinical Breakthroughs
      • Research
      • News
    • Urology >
      • Clinical Breakthroughs
      • Research
      • News
  • CME
  • REFERRALS
    • Refer to NM Cardiovascular
    • Refer to NM Neurosciences
    • Refer to Other Specialties

< BACK TO RESEARCH IN NEUROSCIENCES

RNA

April 2021

NEUROSCIENCES

PROTEIN VARIANT MAY HAVE POTENTIAL AS TARGET FOR GLIOBLASTOMA

Featuring: Shi-Yuan Cheng, PhD
​
Inhibiting a novel protein variant within glioma stem cells may be a promising therapeutic approach to treat glioblastoma, according to a Northwestern Medicine study published in Nature Cell Biology.

“With this study, we found a novel peptide, which is only highly expressed in cancer, activates the EGFR signaling pathway,” said Shi-Yuan Cheng, PhD, professor in the Ken and Ruth Davee Department of Neurology Division of Neuro-Oncology and co-senior author of the study.

Glioblastoma, the most common and aggressive type of brain cancer, is associated with an average survival rate of 12 to 18 months, due to the tumor’s high plasticity which limits the effectiveness of current therapies.

Roughly half of glioblastoma tumors are associated with increased activation of the EGFR cell signaling pathway in tumor cells, a known oncogenic driver of tumor growth. However, previous work has found EGFR-targeting therapies are ineffective in treating patients with glioblastoma, emphasizing the need for novel therapeutic interventions.

For the current study, the investigators aimed to identify coding circular RNAs (circRNAs) — strands of RNA that form closed loops and are involved in various physiological processes — in glioblastoma tumor cells, and whether multiple rounds of circRNA translation generates proteins that could serve as potential therapeutic targets.

Using RNA sequencing and ribosomal profiling of paired normal and tumor tissue samples from vitro and in vivo models of glioblastoma, the team found that a novel E-cadherin protein variant called C-E-Cad is overexpressed in glioma stem cells.

Specifically, C-E-Cad binds to EGFR through a novel and unique 14 amino acid sequence at its tail and activates the EGFR signaling pathway independent of EGF, the prototype ligand that activates EGFR, thereby promoting cell proliferation and overall glioblastoma tumor growth.

Additionally, the team found that inhibiting C-E-Cad enhanced EGFR-targeting therapies, suggesting the approach may be promising for treating EGFR-driven glioblastoma.

“A specific anti-E-C-Cad antibody against this new 14 amino acid sequence, together with EGFR antibodies, enhances tumor suppression,” said Cheng, who is also a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

This work was supported by the Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine.
​​
This article was originally published in the Northwestern University Feinberg School of Medicine News Center on April 5, 2021. 
Shi-Yuan Cheng PhD headshot
Shi-Yuan Cheng, PhD, professor of the Ken and Ruth Davee Department of Neurology Division of Neuro-Oncology and a member of the Lurie Cancer Center, was co-senior author of the study published in Nature Cell Biology.​

Refer a Patient

Northwestern Medicine welcomes the opportunity to collaborate with you on the care of your patients. 
Call 844.344.6663
Find an NM Neurologist
Find an NM Neurosurgeon
Find an NM Neuroradiologist

You May Also Like

Brain CT results

February 2021

NEUROSCIENCES
Study Identifies New Potential Therapeutic Approach for Glioblastoma
B-cells

October 2020

NEUROSCIENCES
Utilizing B-Cells to Promote Glioblastoma Immunity
Video still of Rimas Lukas, MD

November 2019

NEUROSCIENCES
Immunotherapeutic approaches for treatment of glioblastoma show promise

Northwestern Medicine Breakthroughs for Physicians

About Us     Terms of Use     Privacy Policy     How to Vote for U.S. News & World Report Best Hospitals
© 2025 Northwestern Medicine® and Northwestern Memorial HealthCare. 
Northwestern Medicine® is a trademark of Northwestern Memorial HealthCare, used by Northwestern University
Connect with us
[email protected]
International physicians, contact [email protected]
  • Home
  • Specialties
    • Cardiovascular >
      • Research
      • Clinical Breakthroughs
      • News
    • Endocrinology >
      • Clinical Breakthroughs In Endocrinology
      • Research In Endocrinology
      • News
    • ENT (Otolaryngology) >
      • Clinical Breakthroughs
      • Research
      • News
    • Gastroenterology >
      • Clinical Breakthroughs
      • Research
      • News
    • Geriatrics >
      • Clinical Breakthroughs >
        • Managing Osteoporosis in Older Adults
      • Research
      • News
    • Neurosciences >
      • Rare and Complex Brain Tumors
      • Research
      • COVID-19 and Neurosciences
      • News
      • Clinical Breakthroughs
    • OB-GYN >
      • Clinical Breakthroughs
      • Research
      • News
    • Oncology >
      • Clinical Breakthroughs
      • Research
      • News
    • Ophthalmology >
      • Clinical Breakthroughs
      • Research
      • News
    • Organ Transplant >
      • Clinical Breakthroughs
      • Research
      • News
    • Orthopaedics >
      • Clinical Breakthroughs
      • Research
      • News
    • Psychiatry >
      • Clinical Breakthroughs
      • Research
      • News
    • Pulmonary >
      • Clinical Breakthroughs
      • Research
      • News
    • Rehabilitation >
      • Clinical Breakthroughs
      • News
    • Rheumatology >
      • Clinical Breakthroughs
      • Research
      • News
    • Urology >
      • Clinical Breakthroughs
      • Research
      • News
  • CME
  • REFERRALS
    • Refer to NM Cardiovascular
    • Refer to NM Neurosciences
    • Refer to Other Specialties