Picture

Northwestern Medicine
​Breakthroughs for Physicians

​​
  • Home
  • Specialties
    • Cardiovascular >
      • Research
      • Clinical Breakthroughs
      • News
    • Endocrinology >
      • Clinical Breakthroughs In Endocrinology
      • Research In Endocrinology
      • News
    • ENT (Otolaryngology) >
      • Clinical Breakthroughs
      • Research
      • News
    • Gastroenterology >
      • Clinical Breakthroughs
      • Research
      • News
    • Geriatrics >
      • Clinical Breakthroughs
      • Research
      • News
    • Neurosciences >
      • Rare and Complex Brain Tumors
      • Research
      • COVID-19 and Neurosciences
      • News
      • Clinical Breakthroughs
    • OB-GYN >
      • Clinical Breakthroughs
      • Research
      • News
    • Oncology >
      • Clinical Breakthroughs
      • Research
      • News
    • Ophthalmology >
      • Clinical Breakthroughs
      • Research
      • News
    • Organ Transplant >
      • Clinical Breakthroughs
      • Research
      • News
    • Orthopaedics >
      • Clinical Breakthroughs
      • Research
      • News
    • Psychiatry >
      • Clinical Breakthroughs
      • Research
      • News
    • Pulmonary >
      • Clinical Breakthroughs
      • Research
      • News
    • Rehabilitation >
      • Clinical Breakthroughs
      • News
    • Rheumatology >
      • Clinical Breakthroughs
      • Research
      • News
    • Urology >
      • Clinical Breakthroughs
      • Research
      • News
  • CME
  • REFERRALS
    • Refer to NM Cardiovascular
    • Refer to NM Neurosciences
    • Refer to Other Specialties

< BACK TO RESEARCH IN NEUROSCIENCES

brain scan

August 2021

NEUROSCIENCES

FLUORESCENT LABEL PASSES THROUGH BLOOD-BRAIN BARRIER

Fluorescent indocarbocyanine lipid (ICL) shows much better distribution within glioblastoma brain tumors compared to fluorescent phospholipids, according to a study published in ACS Nano.

Finding compounds that can effectively penetrate the blood-brain barrier is a major challenge in glioblastoma research, so these findings can help guide scientists in future experiments and also hint at the underlying mechanisms governing barrier permeability, according to Irina Balyasnikova, PhD, associate professor of Neurological Surgery and co-senior author of the study.

“The continuous penetration and distribution of ICLs should have implications for how we formulate these compounds,” said Balyasnikova, who is also a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.
The study was a collaboration between Balyasnikova and Dmitri Simberg, PhD, associate professor of pharmaceutical sciences at the University of Colorado and co-senior author of the study.

Liposomes, spherical vesicles comprised of phospholipid layers, are one of the most commonly used nano-scale drug delivery platforms. Mimicking the structure of ordinary cell membranes, liposomes’ water solubility and biodegradability make them a popular choice for cancer therapeutic delivery.

Liposomes exhibit good tumor uptake in many types of cancer, but have trouble with glioblastoma, according to Balyasnikova.

“Glioblastoma is hidden behind the blood-brain barrier, and most drugs and nanoparticles cannot efficiently penetrate and distribute behind the barrier,” Balyasnikova said.

In the current study, scientists labeled liposomes with both the ICL label or fluorescent phospholipid (FPL) label in the same liposome, and compared their penetration in models of glioblastoma, breast cancer and and head and neck cancer. While both labels initially localized in and around tumor blood vessels, the ICL label spread over a significantly larger tumor area — even past the blood-brain barrier.

“You could see them homogenously penetrating the tumor in the model,” Balyasnikova said.

This is useful for tracking the spread of anti-cancer treatments, both in experiments and potentially in future treatments, according to Balyasnikova. Further, the ICL label was taken up by tumor-associated macrophages. Uptake by macrophages is especially important in the context of glioblastoma, as glioblastoma-associated macrophages are heavily implicated in treatment resistance due to the immune-suppressive environment they generate in the brain.

“The next step for our collaborative effort is to use ICLs to deliver drugs that either kill these macrophages or prevent them from generating this immune-suppressive phenotype, and then this could be a great system,” Balyasnikova said. “This could be a great addition to immunotherapy for glioblastoma.”

The study was supported by National Institutes of Health grants R01CA194058, R33NS101150, R01NS106379 and R01NS122395.

This article was originally published in the Feinberg School of Medicine News Center on August 23, 2021. 
Picture of Maciej Lesniak, MD
Irina Balyasnikova, PhD, associate professor of Neurological Surgery, was senior author of the study published in ACS Nano.

Refer a Patient

Northwestern Medicine welcomes the opportunity to collaborate with you on the care of your patients. 
Call 844.344.6663
Find an NM Neurologist
Find an NM Neurosurgeon
Find an NM Neuroradiologist

You May Also Like

scientific image

July 2021

NEUROSCIENCES
Novel Therapy May Improve Survival for Malignant Gliomas
scientific image

April 2021

NEUROSCIENCES
Protein Variant May Have Potential as Target for Glioblastoma
Image of Dr. Alpesh Patel

June 2021

NEUROSCIENCES
Team-Based Approach Streamlines and Simplifies Spine Care

Northwestern Medicine Breakthroughs for Physicians

About Us     Terms of Use     Privacy Policy     How to Vote for U.S. News & World Report Best Hospitals
© 2025 Northwestern Medicine® and Northwestern Memorial HealthCare. 
Northwestern Medicine® is a trademark of Northwestern Memorial HealthCare, used by Northwestern University
Connect with us
[email protected]
International physicians, contact [email protected]
  • Home
  • Specialties
    • Cardiovascular >
      • Research
      • Clinical Breakthroughs
      • News
    • Endocrinology >
      • Clinical Breakthroughs In Endocrinology
      • Research In Endocrinology
      • News
    • ENT (Otolaryngology) >
      • Clinical Breakthroughs
      • Research
      • News
    • Gastroenterology >
      • Clinical Breakthroughs
      • Research
      • News
    • Geriatrics >
      • Clinical Breakthroughs
      • Research
      • News
    • Neurosciences >
      • Rare and Complex Brain Tumors
      • Research
      • COVID-19 and Neurosciences
      • News
      • Clinical Breakthroughs
    • OB-GYN >
      • Clinical Breakthroughs
      • Research
      • News
    • Oncology >
      • Clinical Breakthroughs
      • Research
      • News
    • Ophthalmology >
      • Clinical Breakthroughs
      • Research
      • News
    • Organ Transplant >
      • Clinical Breakthroughs
      • Research
      • News
    • Orthopaedics >
      • Clinical Breakthroughs
      • Research
      • News
    • Psychiatry >
      • Clinical Breakthroughs
      • Research
      • News
    • Pulmonary >
      • Clinical Breakthroughs
      • Research
      • News
    • Rehabilitation >
      • Clinical Breakthroughs
      • News
    • Rheumatology >
      • Clinical Breakthroughs
      • Research
      • News
    • Urology >
      • Clinical Breakthroughs
      • Research
      • News
  • CME
  • REFERRALS
    • Refer to NM Cardiovascular
    • Refer to NM Neurosciences
    • Refer to Other Specialties