Picture

Northwestern Medicine
​Breakthroughs for Physicians

​​
  • Home
  • Specialties
    • Cardiovascular >
      • Research
      • Clinical Breakthroughs
      • News
    • Endocrinology >
      • Clinical Breakthroughs In Endocrinology
      • Research In Endocrinology
      • News
    • ENT (Otolaryngology) >
      • Clinical Breakthroughs
      • Research
      • News
    • Gastroenterology >
      • Clinical Breakthroughs
      • Research
      • News
    • Geriatrics >
      • Clinical Breakthroughs
      • Research
      • News
    • Neurosciences >
      • Rare and Complex Brain Tumors
      • Research
      • COVID-19 and Neurosciences
      • News
      • Clinical Breakthroughs
    • OB-GYN >
      • Clinical Breakthroughs
      • Research
      • News
    • Oncology >
      • Clinical Breakthroughs
      • Research
      • News
    • Ophthalmology >
      • Clinical Breakthroughs
      • Research
      • News
    • Organ Transplant >
      • Clinical Breakthroughs
      • Research
      • News
    • Orthopaedics >
      • Clinical Breakthroughs
      • Research
      • News
    • Psychiatry >
      • Clinical Breakthroughs
      • Research
      • News
    • Pulmonary >
      • Clinical Breakthroughs
      • Research
      • News
    • Rehabilitation >
      • Clinical Breakthroughs
      • News
    • Rheumatology >
      • Clinical Breakthroughs
      • Research
      • News
    • Urology >
      • Clinical Breakthroughs
      • Research
      • News
  • CME
  • REFERRALS
    • Refer to NM Cardiovascular
    • Refer to NM Neurosciences
    • Refer to Other Specialties

< BACK TO RESEARCH IN PULMONARY

Microscopic image

March 2021

PULMONARY

IDENTIFYING MOLECULAR MECHANISMS WITHIN THE NUCLEAR LAMINA

Featuring: Robert Goldman, PhD
​
Northwestern Medicine investigators discovered that nuclear surface proteins called nuclear lamin isoforms regulate the position and organization of nuclear pore complexes, according to a study published in the Journal of Cell Biology. The findings advance the understanding of molecular mechanisms behind genetic mutations and the rare diseases they can cause.

Robert Goldman, PhD, professor of Cell and Developmental Biology and of Medicine in the Division of Pulmonary and Critical Care, was senior author of the study.

On the surface of the cell’s nucleus is the nuclear lamina, a mesh-like network made up of a family of fibrous proteins called the nuclear lamins, located near the inner part of the nucleus’ double membrane. Also embedded within the nuclear lamina are nuclear pore complexes (NPCs), which are made up of 30 distinct proteins and cross the nucleus’ double membrane. NPCs allow small molecules such as ions and proteins to pass into and out of the nucleus.

While investigators have hypothesized that NPCs and lamins interact in a certain way, the molecular basis of these proposed interactions has previously remained unknown, according to Goldman.

Using structured illumination microscopy, the investigators made three-dimensional reconstructions of the nuclear lamina — a thin layer on the nuclear surface measuring a mere 14 nanometers — from mouse embryo fibroblasts. From this high-resolution dataset, they observed that certain components of NPCs are indeed essential for their organization within the meshworks of the nuclear lamins.

Next, the team used electron cryotomography to further analyze the images of interactions between individual lamins and NPCs, discovering that the nuclear lamins anchor and position NPCs as well as regulate the number of NPCs on the nuclear surface.

According to Goldman, only until recently have nuclear lamins become a topic of interest amongst investigators, when previous work found that genetic mutations in the nuclear lamin A gene cause many rare diseases, including muscular dystrophy, dilated cardiomyopathy and progeria, a disease which causes premature aging in children.

“How the lamins interact with the genome has definitely become an area of great interest in cell biology,” said Goldman, who is also a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Goldman said his team and their collaborators are now studying how nuclear lamins connect DNA to the nuclear surface, and how lamins may regulate the conversion of heterochromatin (inactive condensed DNA) to euchromatin (chromatin active in DNA transcription).
​
Co-authors include Stephen Adam, ’86 PhD, associate professor of Cell and Developmental Biology;  Yixian Zheng, PhD, director of the Department of Embryology at the Carnegie Institution for Science;  Ohad Medalia, PhD, associate professor of Biochemistry at the University of Zurich and Khuloud Jaqaman, PhD, assistant professor of Biophysics at the University of Texas Southwestern Medical Center.

This article was originally published in the Feinberg School of Medicine News Center on March 12, 2021 . 
Robert Goldman PhD headshot
Robert Goldman, PhD, professor of Cell and Developmental Biology and of Medicine in the Division of Pulmonary and Critical Care, was senior author of the study published in the Journal of Cell Biology.

Refer a Patient

Northwestern Medicine welcomes the opportunity to partner with you in caring for your patients. ​
Call 844.344.6663
Find an NM PULMONOLOGIST

You May Also Like

Dr. David Odell Headshot

November 2019

PULMONARY
Advancing Outcomes of Esophageal Cancer Through Early Detection, Clinical Trials, Minimally Invasive Surgery and More
Samuel Kim, MD in Surgical Scrubs

November 2019

PULMONARY
Behind Better: Inside the OR: Lung Cancer
Samuel Kim, MD Video Still

November 2019

PULMONARY
Robotic Thoracic Surgery at Northwestern Medicine

Northwestern Medicine Breakthroughs for Physicians

About Us     Terms of Use     Privacy Policy     How to Vote for U.S. News & World Report Best Hospitals
© 2025 Northwestern Medicine® and Northwestern Memorial HealthCare. 
Northwestern Medicine® is a trademark of Northwestern Memorial HealthCare, used by Northwestern University
Connect with us
[email protected]
International physicians, contact [email protected]
  • Home
  • Specialties
    • Cardiovascular >
      • Research
      • Clinical Breakthroughs
      • News
    • Endocrinology >
      • Clinical Breakthroughs In Endocrinology
      • Research In Endocrinology
      • News
    • ENT (Otolaryngology) >
      • Clinical Breakthroughs
      • Research
      • News
    • Gastroenterology >
      • Clinical Breakthroughs
      • Research
      • News
    • Geriatrics >
      • Clinical Breakthroughs
      • Research
      • News
    • Neurosciences >
      • Rare and Complex Brain Tumors
      • Research
      • COVID-19 and Neurosciences
      • News
      • Clinical Breakthroughs
    • OB-GYN >
      • Clinical Breakthroughs
      • Research
      • News
    • Oncology >
      • Clinical Breakthroughs
      • Research
      • News
    • Ophthalmology >
      • Clinical Breakthroughs
      • Research
      • News
    • Organ Transplant >
      • Clinical Breakthroughs
      • Research
      • News
    • Orthopaedics >
      • Clinical Breakthroughs
      • Research
      • News
    • Psychiatry >
      • Clinical Breakthroughs
      • Research
      • News
    • Pulmonary >
      • Clinical Breakthroughs
      • Research
      • News
    • Rehabilitation >
      • Clinical Breakthroughs
      • News
    • Rheumatology >
      • Clinical Breakthroughs
      • Research
      • News
    • Urology >
      • Clinical Breakthroughs
      • Research
      • News
  • CME
  • REFERRALS
    • Refer to NM Cardiovascular
    • Refer to NM Neurosciences
    • Refer to Other Specialties