Picture

Northwestern Medicine
​Breakthroughs for Physicians

​​
  • Home
  • Specialties
    • Cardiovascular >
      • Research
      • Clinical Breakthroughs
      • News
    • Endocrinology >
      • Clinical Breakthroughs In Endocrinology
      • Research In Endocrinology
      • News
    • ENT (Otolaryngology) >
      • Clinical Breakthroughs
      • Research
      • News
    • Gastroenterology >
      • Clinical Breakthroughs
      • Research
      • News
    • Geriatrics >
      • Clinical Breakthroughs
      • Research
      • News
    • Neurosciences >
      • Rare and Complex Brain Tumors
      • Research
      • COVID-19 and Neurosciences
      • News
      • Clinical Breakthroughs
    • OB-GYN >
      • Clinical Breakthroughs
      • Research
      • News
    • Oncology >
      • Clinical Breakthroughs
      • Research
      • News
    • Ophthalmology >
      • Clinical Breakthroughs
      • Research
      • News
    • Organ Transplant >
      • Clinical Breakthroughs
      • Research
      • News
    • Orthopaedics >
      • Clinical Breakthroughs
      • Research
      • News
    • Psychiatry >
      • Clinical Breakthroughs
      • Research
      • News
    • Pulmonary >
      • Clinical Breakthroughs
      • Research
      • News
    • Rehabilitation >
      • Clinical Breakthroughs
      • News
    • Rheumatology >
      • Clinical Breakthroughs
      • Research
      • News
    • Urology >
      • Clinical Breakthroughs
      • Research
      • News
  • CME
  • REFERRALS
    • Refer to NM Cardiovascular
    • Refer to NM Neurosciences
    • Refer to Other Specialties

< BACK TO RESEARCH IN ONCOLOGY

April 2024

ONCOLOGY

NOVEL MECHANISM SUPPORTS ANTITUMOR RESPONSE AND T-CELL SURVIVAL

Featuring: Bin Zhang, MD, PhD

A recent Northwestern Medicine study has discovered a previously unknown molecular mechanism that supports antitumor responses and cell survival in cytotoxic immune cells, according to findings published in the Journal of Clinical Investigation.

CD8+ T-cells are cytotoxic immune cells that can kill cancer cells, as well as cells infected with viruses or bacteria. These specialized T-cell express receptors that recognize specific antigens and stimulate an immune response to attack cancer cells and other foreign antigens.

Adoptive cell therapy, a type of immunotherapy that includes CAR T-cell therapy and tumor-infiltrating lymphocyte therapy, uses the patient’s own T-cells to fight cancer and other diseases.

However, this persistent immune response causes T-cells to become exhausted and lose their ability to kills cancer cells. Increasing T-cell survival especially within the tumor microenvironment, has remained an ongoing area of interest in the field, according to Bin Zhang, MD, PhD, the Johanna Dobe Professor of Cancer Immunology and senior author of the study.  

“In this study, we tried to think about how use metabolic manipulation to make effector T-cells persist longer, which increases T-cell survival, while actually still maintaining their effector function which means they still have ability to kill tumor cells,” said Zhang, who is also a professor of Medicine in the Division of Hematology and Oncology, of Microbiology-Immunology and of Pathology.
Representative composite image of a breast cancer specimen
Representative composite image of a breast cancer specimen stained by multi-color IHC comprising CD8, Ki67, GCLC, GPX4, 923 A2AR, PanCK and DAPI. Representative CD8+GPX4+ (blue arrow), CD8+GCLC+ (blue arrowhead), CD8+GPX4+GCLC+ 924 (red arrow), and CD8+Ki67+ GPX4+GCLC+ (red arrowhead) cells. Courtesy of Bin Zhang, PhD.
Previous work has shown that increased levels of a metabolite called glutathione (GSH), a basic nutrient that supports cell survival, are expressed in many tumors and support cancer progression and treatment resistance. Antitumor responses and proper CD8 T-cell function also relies on the enzyme glutathione peroxidase 4 (GPX4), and increased GSH has been shown to prevent GPX4-dependent ferroptosis, a type of programmed cell death.

In the current study, Zhang and his team aimed to identify the molecular mechanism in the GSH-GPX4 metabolic axis that modulates the antitumor response of CD8 T-cells.

By selectively modulating CD8+ T-cells with pharmacological blockade and genetic ablation techniques, and using RNA-sequencing and metabolic profiling, the investigators found that the adenosine A2A receptor (A2AR) signaling pathway coordinates with the GSH-GPX4 axis to support the metabolic fitness and antitumor function of CD8+ T-cells.

“We identified that this signaling pathway [A2AR] closely crosstalks with one of the essential metabolic pathways, GSH-GPX4, which is key for maintaining T-cell survival,” Zhang said.

Subsequent analysis of single-cell sequencing data also revealed a subtype of intra-tumoral CD8+ T-cells that expressed a GSH metabolism-related gene signature associated with therapeutic response and survival across several types of cancers, including melanoma, breast cancer and colon cancer.

​According to Zhang, the findings could inform the development of new immunotherapeutic strategies that support increased T-cell activation and survival within the tumor microenvironment, as well as support the discovery of new biomarkers that predict immunotherapy response.

“We propose a mechanism underlying an antitumor response of CD8+ T-cells by modulating GSH metabolism and the A2AR signaling,” Zhang said.

Co-authors include Jason Miska, PhD, assistant professor of Neurological Surgery; Jennifer Wu, PhD, the Mary and Patrick Scanlan Professor of Urology and Microbiology-Immunology; Deyu Fang, PhD, the Hosmer Allen Johnson Professor of Pathology; Jeffrey Sosman, MD, professor of Medicine in the Division of Hematology and Oncology; and Navdeep Chandel, PhD, the David W. Cugell, MD, Professor of Medicine in the Division of Pulmonary and Critical Care and of Biochemistry and Molecular Genetics.

Zhang, Miska, Wu, Fang, Sosman and Chandel are members of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University and the Center for Human Immunobiology.

This research was in part supported by the National Institutes of Health grants CA222963, CA250101, 611 CBC Catalyst Award, CA257520 and CA258857.

​This article was originally published in the Feinberg School of Medicine News Center on April 7, 2024. ​
Bin Zhang, MD, PhD headshot
Bin Zhang, MD, PhD, the Johanna Dobe Professor of Cancer Immunology, was senior author of the study published in the Journal of Clinical Investigation.
​

Refer a Patient

Northwestern Medicine welcomes the opportunity to collaborate with you on the care of your patients. 
Refer to Us

You May Also Like

brain scan images
 

January 2024

ONCOLOGY
New 3D Spatial Approach Reveals Interactive View of Glioblastoma and Therapeutic Targets
Northwestern Medicine Building

November 2023

ONCOLOGY
Lurie Cancer Center Investigators Recognized on 2023 'Highly Cited' List
physician looking at x-ray
 

December 2023

ONCOLOGY
AI May Spare Breast Cancer Patients Unnecessary Treatments

Northwestern Medicine Breakthroughs for Physicians

About Us     Terms of Use     Privacy Policy     How to Vote for U.S. News & World Report Best Hospitals
© 2025 Northwestern Medicine® and Northwestern Memorial HealthCare. 
Northwestern Medicine® is a trademark of Northwestern Memorial HealthCare, used by Northwestern University
Connect with us
[email protected]
International physicians, contact [email protected]
  • Home
  • Specialties
    • Cardiovascular >
      • Research
      • Clinical Breakthroughs
      • News
    • Endocrinology >
      • Clinical Breakthroughs In Endocrinology
      • Research In Endocrinology
      • News
    • ENT (Otolaryngology) >
      • Clinical Breakthroughs
      • Research
      • News
    • Gastroenterology >
      • Clinical Breakthroughs
      • Research
      • News
    • Geriatrics >
      • Clinical Breakthroughs
      • Research
      • News
    • Neurosciences >
      • Rare and Complex Brain Tumors
      • Research
      • COVID-19 and Neurosciences
      • News
      • Clinical Breakthroughs
    • OB-GYN >
      • Clinical Breakthroughs
      • Research
      • News
    • Oncology >
      • Clinical Breakthroughs
      • Research
      • News
    • Ophthalmology >
      • Clinical Breakthroughs
      • Research
      • News
    • Organ Transplant >
      • Clinical Breakthroughs
      • Research
      • News
    • Orthopaedics >
      • Clinical Breakthroughs
      • Research
      • News
    • Psychiatry >
      • Clinical Breakthroughs
      • Research
      • News
    • Pulmonary >
      • Clinical Breakthroughs
      • Research
      • News
    • Rehabilitation >
      • Clinical Breakthroughs
      • News
    • Rheumatology >
      • Clinical Breakthroughs
      • Research
      • News
    • Urology >
      • Clinical Breakthroughs
      • Research
      • News
  • CME
  • REFERRALS
    • Refer to NM Cardiovascular
    • Refer to NM Neurosciences
    • Refer to Other Specialties