Picture

Northwestern Medicine
​Breakthroughs for Physicians

​​
  • Home
  • Specialties
    • Cardiovascular >
      • Research
      • Clinical Breakthroughs
      • News
    • Endocrinology >
      • Clinical Breakthroughs In Endocrinology
      • Research In Endocrinology
      • News
    • ENT (Otolaryngology) >
      • Clinical Breakthroughs
      • Research
      • News
    • Gastroenterology >
      • Clinical Breakthroughs
      • Research
      • News
    • Geriatrics >
      • Clinical Breakthroughs
      • Research
      • News
    • Neurosciences >
      • Rare and Complex Brain Tumors
      • Research
      • COVID-19 and Neurosciences
      • News
      • Clinical Breakthroughs
    • OB-GYN >
      • Clinical Breakthroughs
      • Research
      • News
    • Oncology >
      • Clinical Breakthroughs
      • Research
      • News
    • Ophthalmology >
      • Clinical Breakthroughs
      • Research
      • News
    • Organ Transplant >
      • Clinical Breakthroughs
      • Research
      • News
    • Orthopaedics >
      • Clinical Breakthroughs
      • Research
      • News
    • Psychiatry >
      • Clinical Breakthroughs
      • Research
      • News
    • Pulmonary >
      • Clinical Breakthroughs
      • Research
      • News
    • Rehabilitation >
      • Clinical Breakthroughs
      • News
    • Rheumatology >
      • Clinical Breakthroughs
      • Research
      • News
    • Urology >
      • Clinical Breakthroughs
      • Research
      • News
  • CME
  • REFERRALS
    • Refer to NM Cardiovascular
    • Refer to NM Neurosciences
    • Refer to Other Specialties

< BACK TO RESEARCH IN ONCOLOGY

April 2022

ONCOLOGY

CELL-BASED TREATMENTS TO FIGHT DISEASES WITH LUISA IRUELA-ARISPE, PHD 

Featuring: Luisa Iruela-Arispe, PhD   
​Cell and Developmental Biology is a field that's integral to finding new therapies for a wide variety of diseases. At 
Feinberg, Luisa Iruela-Arispe, PhD, a vascular biologist, leads the Department of Cell and Developmental Biology as chair. In this episode, talks about her research and the future of cell-based treatments for diseases.  
 “I am really very passionate about blood vessels. They are tubes that permeate our body, but they impact both healing as well as they can accelerate or really make certain steps in disease progression worse. So, by manipulating blood vessels we can impact either the healing process or accelerate or even eliminate certain diseases.”  
​
Episode Notes

Iruela-Arispe, now an internationally recognized vascular biologist, says her interest in the field of cell biology, and specifically in endothelial cells, began as a graduate student. Since that time has published more than 200 papers and now leads Feinberg’s Department of Cell and Developmental Biology. 

Topics covered in this show: ​
​
  • Iruela-Arispe says through understanding cell biology many advancements have been made in treating human diseases, particularly in cancer.  
  • Endothelial cells, which line the inner side of all blood vessels, have been of particular interest to Iruela-Arispe. They have unique qualities that allow them to form new vasculature and permeate new structures. They are now being used in the area of regeneration biology, creating new organs or organoids to we can replenish damaged tissue.  
  • In her department there are several bioprinting/organoid projects taking place using brain organoids and intestinal organoids with blood vessels so that allow them to grow, expand and better imitate or mimic normal organs.  
  • Iruela-Arispe's lab is involved in several collaborations, including on one with the Department of Pharmacology, to manipulate cells through pharmacological means. Another with the Department of Neurology in vascular dementia and how to improve the vascularization of the brain in cases such as Alzheimer's disease. 
  • She details findings from her lab published in two recent papers. One in Nature Cardiovascular Research in which her team discovered a new cell type, a macrophage whose function of is to eliminate those clots in blood vessels. Its function was not previously understood, and this discovery could have significant consequences to understanding disease and understanding how disturbance of one particular cell type can trigger consequences that are system wide. 
  • She was also the co-author of a study published in Nature that details a comprehensive map of human haematopoietic stem cell ontogeny could provide benefits to millions of people that are affected by blood diseases or blood cancers or even perhaps even regeneration of blood.  
  • Iruela-Arispe details what it was like to take on her role as chair just as the COVID-19 pandemic began and how she plans to build a top cell and developmental biology department in the next 5 to ten years. ​

Additional Reading  
  • Recent publication in Nature: Mapping human haematopoietic stem cells from haemogenic endothelium to birth 
  • Recent publication in Nature Cardiovascular Research on new type of macrophage: Aortic intimal resident macrophages are essential for maintenance of the non-thrombogenic intravascular state 
  • Editorial by Iruela-Arispe published in Current Opinion in Hematology: New technological developments and their impact in vascular research  ​

​Subscribe to Feinberg School of Medicine podcasts here:

iTunes 
Spotify

Recorded on April 20, 2022.

This podcast was originally released by Northwestern University Feinberg School of Medicine in March 2022. ​
Luisa Iruela-Arispe, PhD    headshot
Luisa Iruela-Arispe, PhD   ​
Chair, Department of Cell and Developmental Biology
Stephen Walter Ranson Professor of Cell Biology
Professor of Cell and Developmental Biology
​

Refer a Patient

Northwestern Medicine welcomes the opportunity to partner with you in caring for your patients. ​
Call 844.344.6663
Find an NM ONCOLOGIST

You May Also Like

B-Cell Acute Illustration

February 2021

ONCOLOGY
Identifying Therapeutic Targets for B-cell Acute Lymphoblastic Leukemia
Image of Lurie Cancer Center Building

September 2021

ONCOLOGY
Lurie Cancer Center Receives Prostate Cancer SPORE from the NCI
Epigenetic Markers Illustration

December 2020

ONCOLOGY
Identifying Oncogenes through Epigenetic Markers

Northwestern Medicine Breakthroughs for Physicians

About Us     Terms of Use     Privacy Policy     How to Vote for U.S. News & World Report Best Hospitals
© 2025 Northwestern Medicine® and Northwestern Memorial HealthCare. 
Northwestern Medicine® is a trademark of Northwestern Memorial HealthCare, used by Northwestern University
Connect with us
[email protected]
International physicians, contact [email protected]
  • Home
  • Specialties
    • Cardiovascular >
      • Research
      • Clinical Breakthroughs
      • News
    • Endocrinology >
      • Clinical Breakthroughs In Endocrinology
      • Research In Endocrinology
      • News
    • ENT (Otolaryngology) >
      • Clinical Breakthroughs
      • Research
      • News
    • Gastroenterology >
      • Clinical Breakthroughs
      • Research
      • News
    • Geriatrics >
      • Clinical Breakthroughs
      • Research
      • News
    • Neurosciences >
      • Rare and Complex Brain Tumors
      • Research
      • COVID-19 and Neurosciences
      • News
      • Clinical Breakthroughs
    • OB-GYN >
      • Clinical Breakthroughs
      • Research
      • News
    • Oncology >
      • Clinical Breakthroughs
      • Research
      • News
    • Ophthalmology >
      • Clinical Breakthroughs
      • Research
      • News
    • Organ Transplant >
      • Clinical Breakthroughs
      • Research
      • News
    • Orthopaedics >
      • Clinical Breakthroughs
      • Research
      • News
    • Psychiatry >
      • Clinical Breakthroughs
      • Research
      • News
    • Pulmonary >
      • Clinical Breakthroughs
      • Research
      • News
    • Rehabilitation >
      • Clinical Breakthroughs
      • News
    • Rheumatology >
      • Clinical Breakthroughs
      • Research
      • News
    • Urology >
      • Clinical Breakthroughs
      • Research
      • News
  • CME
  • REFERRALS
    • Refer to NM Cardiovascular
    • Refer to NM Neurosciences
    • Refer to Other Specialties